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Summary. A statistical treatment for very large configuration interaction (CI) 
calculations is presented. The energy is written as a sum of elementary contribu- 
tions, one per determinant, and the statistical choice is made among these 
elementary contributions. Two types of practical tests determine what conditions 
must be verified to get reliable results. It is verified that, if N is the dimension of 
the CI problem, the size of the statistical samples must grow as x /N to keep the 
same accuracy in the results. 
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1 Introduction 

Several methods allow us to include correlation in quantum chemistry calcula- 
tions. The full CI approach [1-3] is the most simple to describe since, for a given 
atomic orbital (AO) basis set, there is no further approximation. The size of the 
full CI matrix goes so rapidly with the basis set that only small systems can be 
studied, in spite of very efficient diagonalization techniques, direct CI programs 
and approximate CI schemes [4, 5] on one hand, and in spite of very large 
improvements in the rapidity of computers, on the other hand. The full CI 
calculations are therefore most widely used as benchmarks and a real chemical 
problem requires further, sometimes drastic approximations. Quantum chemistry 
calculations use various approximated methods among which we can mention, 
without being exhaustive, contracted CI, MRCI [6], the more sophisticated 
coupled cluster approaches [7], the pure perturbational treatments such as MP2 
[8], MP4 [9-11], MP5 [12] and the methods mixing variation and perturbation 
[ 13]. None of these methods is universal, and depending on whether a large 
system is studied, or a great precision is needed, a more or less sophisticated (and 
expensive) method will be employed. 

If  one would like to seek what all these methods have in common, one could 
find that all these calculations deal with very large matrices and eigenvectors. 
The time-consuming steps are always matrix multiplications and represent the 
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first limitation, and the second limitation is due to memory and disk storage: the 
problem has been solved by direct CI for several years [2] only for full CI 
calculations, and some works are in progress in selected direct CI [14, 15]. Since 
the final energy is obtained after very large calculations involving huge matrices 
and vectors, it is the result of a large number of very Small contributions. 

In such a situation, a statistical approach seems possible. Zarrabian et al. [16] 
propose a method similar to a truncated CI, in which the truncated part of the 
CI is chosen randomly. The process is repeated several times, and there is a new 
set of randomly chosen configurations for each calculation. They have unfortu- 
nately proposed no practical tests for the moment. 

The method proposed here is completely different. We shall only consider 
cases for which each one of the small contributions can be calculated separately. 
The final energy will be written as a sum of N additive contributions, N being the 
size of the CI matrix. Each elementary contribution corresponds to a determi- 
nant of the CI basis, and the importance of its contribution will depend on the 
weight of the determinant in the wave function. Since one can anticipate whether 
this weight will be large or small, it is possible to make the statistical treatment 
only on small contributions. 

It can already be said that this choice has two consequences: (i) the 
computational time is proportional to the percentage of determinants kept in the 
calculation. (ii) no iterative process can be used, since the independence of the 
various contributions would be lost. Thus, the statistical treatment will not 
concern a diagonalization process, but only the calculation of expectation values 
or perturbative energy. 

This paper proposes two different examples of statistical methods on CI 
calculations. The first application deals with a semi-empirical valence bond (VB) 
Hamiltonian and the second one concerns more classical MO-CI calculations. As 
it will be demonstrated in these two tests, the crude application of statistical 
methods does not yield satisfactory results. After implementation of the model, 
the results become more reliable. The examples presented here are quite small, 
since the complete (i.e. non-statistical) calculation can be performed without 
difficulty, and the time ratio between statistical and non-statistical calculation is 
not very small. However, they show that, once having verified some conditions, 
they give reliable results and that the computational effort grows as ,,fN, where 
N is the dimension of the CI matrix. These results are quite encouraging, and the 
model should be used in larger calculations. 

2 General method and first test 

In all work, we shall consider that the final energy can be written as a sum of 
elementary contributions AEi. 

N 

E = ~ AE~- (1) 
i = 1  

N is the dimension of the CI matrix and each corresponds to a determinant Ji). 
This is obviously an arbitrary choice for the application of a statistical method 
to a CI calculation, and many other possibilities should exist. In particular, the 
sum could run on the matrix elements instead of the determinants. Zarrabian et 
al. [16] propose a statistical approach of CI calculations, in a completely different 
way leading to opposite conclusions, but they have unfortunately proposed no 
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practical tests for the moment. A discussion tries to justify the choice made in 
this work in Sect. 5. 

In a perturbational calculation of E, like MP for example, the energy appears 
already as a stun of elementary contributions. For MP2, AEi is given by: 

Aei = (0 [HlJ )2  (2) 
j =  1 A j  

where [0) is the single reference Hartree-Fock and [j) the doubly excited 
determinants. Dj is the MMler-Plesset denominator corresponding to ]j). 

As a first test of statistical calculation of E, it is possible to choose only n 
values of AE~ among the N independent contributions (n ~ N). Instead of 
selecting the most important contributions, as usual in truncation methods, the 
n AE~ will be randomly chosen. This choice gives a "statistical" value of the 
energy, which will be noted E: 

E =  N_ N Z (3) 
nj=t,n 

where ~N= 1,, " means that the n values o f j  result from a random choice among 
the N possible values. 

Of course, MP 2 calculations do not require any particular computational 
effort, and such an approximation could only be justified in more complex 
processes like MP 4 for example. However, MP2 will yield a first simple test. 

Figure 1 gives the results of calculations on the N2 molecule using the triple 
zeta basis set of Huzinaga [17] contracted by Dunning and Hay (9s5p plus two 
d polarization functions with exponents 0.15 and 0.05 [18]). A first MP 2 
calculation gives the exact MP 2 energy E and all the AE~. In a second step, many 
different sets of n AEi values are chosen in a random way. 

In this paper, all the various histograms are obtained in the following way: 
a large number Ns of statistical energies E are obtained using Eq. (3) (typically 
Ns -- 200 in most of the figures). The histograms depend then on two parameters 
that are Ns and the number n of AEi values in the calculation of each E. Nt = Ns • n 
values of A E,. must therefore be calculated. This two-parameter approach can seem 
somewhat complicated, but it is the only way to get some information about the 
quality of result. By computing already Nt values of AE~, one would get the same 
mean energy, but no histogram could be obtained. On the other hand, it would 
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Fig. 1. Statistical MP for the N 2 
molecule (Sect. 2): 1500 values 
(n = 1500) of  AE i are calculated 
and form a sample characterized 
by an energy E. If the statistical 
approach is correct, E should be a 
good approximation of  E. To have 
a good idea of  the accuracy of  the 
result, a large number (Ns = 200) 
of E samples has been chosen, 
which allows us to draw a 
histogram. See the end of Sect. 2 
for comments on the histograms of 
Figs. 1, 2, 3, 5, 6 and 10 
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be possible to calculate Art values of/~, considering that each value N.  AE~ is an 
approximation of the exact energy. This method would also give the same mean 
energy, but the histogram would be very flat, due to the very large dispersion of 
the various values of N • AEi. 

The results illustrated on Fig. 1 are completely unsatisfactory. The dispersion 
of the various results corresponding to different samples is very large. Obviously, 
such a crude approach is not sufficient, and more sophisticated models must be 
explored. 

3 Tests on Pariser-Parr-Pople valence bond (PP-VB) Hamiltonian 

Oujia and Malrieu [19] have developed a semi-empirical method yielding an 
approximate VB eigenvector for a PPP Hamiltonian of conjugated hydrocar- 
bons. If  q50 is the single-determinantal wave function of the molecule, an excellent 
correlated wave function may be obtained by decomposing q~0 into its valence- 
bond components Ci and then multiplying the coefficient Ci of q~i by an 
expression depending on the net charges (0, _+ 1) on the various centers in q~. 
This calculation gives the coefficients c; of vector 0 ' .  The method gave at least 
90% of the correlation energy on a series of structures involving up to 12 atoms. 
Each c~ is calculated separately, and the computational time is proportional to 
the number of calculated coefficients. 

If H is the PPP Hamiltonian, E and 0 are the exact eigenvalue and 
eigenvector: 

H0 = E0 (4) 

and the approximate energy E'  is obtained from ~ '  by: 

e '  = (5 )  

where 10') is a normalized vector. 
It is first necessary to write E '  as a sum of elementary contributions AE~, like 

in Eq. (1). If  H~ are the matrix elements of H and c; are the coefficients of 10'), 
one can write: 

N N 

E'= Z c: Z H.c~ (6) 
i = l  j = l  

and AE~ is then equal to: 
N 

AE~ = c; ~ Huc ~ (7) 
j = l  

In the same way as in Sect. 2, the statistical energy is given by: 

/~,=_N ~ ,AEi (8) 
H i = l , n  

One must notice that, to compute J~' in Eq. (8), it is necessary to know all 
the c~ of the chosen sample, but also all the c~ in interaction with the c~ (i.e. for 
which H,y is not zero) (Eq. (7)). Let 0 's be the vector in which the n coefficients 
corresponding to the determinants I i)  of the sampling have the value c~ of 0 ' ,  
the other being zero. O 's may be considered as the projection of 0 '  onto the 
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Fig. 2. Statistical PPP without 
renormalization of the wave function: 
see comments on Fig. 1. 
n = 1000, Ns = 200. E" is the 
non-statistical energy value of Eq. (5) 

subspace of the n determinants li) of the sampling. E '  is therefore not calculated 
as an expectation value, but is given, after renormalization of O,s, by: 

<0'qgl0'> (9) 

and can obviously be lower than the exact energy E. The time ratio between the 
statistical and the exact calculation is therefore not equal to n / N ,  but m • n / N ,  

where m is the average number of determinants interacting with a given Ii> of the 
sample. The choice of  a PPP Hamiltonian, for which the density of non-zero 
elements in the matrix is very small (the number of  non-zero elements on each 
line of the matrix is lower or equal to the number of bonds on the chemical 
graph), is very relevant here. 

This approach is completely similar to the approach of Sect. 2 and gives very 
bad results too. The uncertainty on the value of E '  is much larger than the 
correlation energy Ec~ - E s c F ,  as illustrated on Fig. 2. 

However, calculating the energy as an expectation value, and not perturba- 
tionally as in Sect. 2 allows us to take account of a supplementary information: 
the vector 10') must be normalized. 

It is worth emphasizing that the use of the norm will be unusual in this work. 
It has nothing to do with the question on whether the perturbative wave function 
must be renormalized or not. The norm will be only used in the following way: 
(i) the sample of c~ coefficients gives a statistical value for the energy, but also for 
the norm; (ii) the norm must be equal to unity, and the discrepancy between the 
statistically evaluated norm and 1 gives very useful information about the quality 
of  the sample. 

Calculating E '  with the formula: 

E ' -  (O,[O,)2 (10) 

one can approximate the norm Y '  of vector ]0 ' )  in the same statistical way as 
for the numerator of Eq. (10). 
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Fig. 3. Statistical PPP without 
renormalization of the wave function: 
see comments on Fig. 1. n = 1000, 
Ns = 200. E' corresponds to Eq. (5) 

Jff '  = Z "c'2 (11) 
i = l , n  

The coefficients c; of 0 '  must be modified, and Eq. (8) becomes: 

E ' =  Z S AE; , , 2  c i (12) 
i = l , n  / i = l , n  

where ~s  at numerator and denominator correspond to the same sample. The 
N/n coefficient has disappeared. 

Figure 3 shows that this new formula gives very good results. Equation (10) 
takes account of the fact that if the sample of  AE~ contributions contains too 
important determinants, on the contrary, numerator and denominator vary in 
the same direction, which corrects an eventual bad sampling. 

Such a large amelioration can however seem rather surprising. A better 
explanation can be given by the following considerations: Let us suppose that 
some coefficients ci of the exact eigenvector ~k of H are known (Eq. (4)). 
Accepting this absurd supposition (it is impossible to know one exact coefficient 
without solving the whole program), a new relation between the coefficients can 
be obtained from Eq. (4): 

N 

~, H~jcj-- Ec, (13) 
i - - 1  

Equations (7) and (11) give: 

AE i = Eel  (14) 

and any sample, even containing only one contribution AEi gives the exact 
energy! 

g=e Z Y, "d =E (IS) 
i =  l , n  i =  l , n  

The uncertainty in calculating/~' will be therefore dependent on the quality of 
the few c; required in Eq. (12). The quality of a statistical treatment will then 
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Fig. 4. Statistical PPP without 
renormalization of the wave 
function: various tests 
corresponding to wave function of  
different accuracy. The curve 
represents the energy as a function 
of  the exact wave function 
perturbation (see text in Sect. 3). 
The vertical bars lengths 
corresponds to twice the root mean 
square for each perturbation. 

depend on the quality of the formalism which gives the approximated c~ 
coefficients. 

In Fig. 4, various tests are presented, corresponding to samplings of different 
qualities. For  these tests, the exact eigenvector ~ was first obtained by diagonal- 
ization, and more or less approximated vectors were obtained by pollution of the 
coefficients ci of ~ by multiplying them by a random coefficient ~i for which 
[ 1 - egl < c~M. The value eM gives a measure of the quality of ~ ' .  The dispersion 
of the results due to the various samplings obviously increases ~ '  as it is less 
accurate. Figure 4 shows the dependence of the dispersion in various samples as 
a function of the importance of the perturbation which damages the wave 
function. 

4 Application to MO-CI calculations 

The attempt presented in Sect. 2 to use a statistical method to get an approxi- 
mated value of the MP 2 energy failed. As said in Sect. 3, the main reason for this 
failure was that no information was available about the norm of the perturbative 
coefficients of the MP2 vector. In Sect. 3, the approximated vector ~ '  should be 
normalized. In the random choice of  some coefficients of  ~ ' ,  this information 
allows us to correct an eventually atypical sample using Eq. (12). In applying 
here this statistical approach to MO-CI problems, the first condition will 
therefore be to compute the energy E' as an expectation energy: 

E , _  (O'lO') (16) 

Contrary to the VB test, the MO-CI matrix contains much more non-zero 
elements. As pointed out in Sect. 3, not only the coefficients of the chosen sample 
must be calculated, but also all their "neighbors", i.e. all the determinants 
interacting with them. The MO-CI matrix is very dense, thus the neighbors are 
very numerous. Some further approximations must be introduced. 

In the present paper, a statistical approach of the MO-C1 problem will be 
applied on a previous work [20], concerning an approximation of SD-CI. Let us 
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resume the theory of [20]: in a subspace So spanned by the N most important 
determinants the Hamiltonian H was diagonalized, giving a zeroth-order func- 
tion: 

I-Io = < P o l n l e o >  (17) 

Holeo> = Eol o> (18) 

where Po is the projection operator onto the So subspace. The remaining N - No 
coefficients formed a vector 01 and were calculated as follows: 

1 N° 

C;-Eo-H~,j~ =1HUc° i>N° (19) 

where the c°'s are the coefficients of ~0. 
The approximate eigenvector ~ '  that will be used in the statistical calcula- 

tions will be given by: 

= (20) 
(1 ~-<ffJl 1~1)) 1/2 

In Eq. (19), the sum runs from 1 to No instead of 1 to N, which will 
considerably diminish the computational time for calculating the c~ coefficients 
on one hand, and avoid the calculation of the coefficients of the neighbors on the 
other hand, since they correspond to So determinants which are already known. 

After computing all the c~ coefficients using Eq. (19), the energy in [20] was 
given by: 

( - )/ E'  = Eo + ~ (E0 - H~;)c 2 ,/ff2 (21) 
i = N o + I  

where JV" is the norm of vector ~' .  
The energy E '  obtained in Eq. (21) (ref. [20]) appears as a sum of elementary 

contributions AE~" 1 ( . )  
E' = ~ 5  Eo + ~ AE; (22) 

i = N o + I  

In a statistical treatment of the sum of Eq. (22), if only n elementary 
contributions AE~ are calculated instead of the total N -  No, the statistical 
energy E '  is given by: 

ff~' = Eo + i=1,, y" s AE; =~, (23) 

where J~0 is t h e n o r m  of ~'0- 
Of course, E '  will be more accurate if So is of larger size, since the 

non-statistical contribution E0 is more important. To get reliable results, So must 
therefore be as large as possible. One may notice that if So becomes larger, only 
the non-statistical part of E will be more time consuming. The statistical part 
does not depend on No, but only on n. In fact, there are two reasons for which 
a larger So makes easier calculation of the statistical part of the energy. The first 
one is that its contribution is less important with respect to E '  and the second 
reason is that all the largest contributions to the energy will be included in Eo, 
and the statistical contributions will be more homogeneous. 



Large configuration interaction eigenvectors 279 

In this paper, we want to test the statistical part of E, and this test will be 
severe if No is small. In the following calculations, the dimension of So will 
therefore be as small as possible. The method is tested on two examples: the N2 
molecule and the benzene molecule. 

For  the N2 molecule, the dimension of the So subspace is 85 and the 
dimension of the total space is 16610 (n = 85, N = 16610). The energy Eo is 
- 0 . 1 3 9 6  a.u., while the total correlation energy given by the approximate SD-CI 
is -0 .3618 for an exact SD-CI energy of -0 .3545 a.u. 

The statistical study of N2 is summarized on Fig. 5. 1500 values (n = 1500) 
of  AE; and c~ are calculated and f o r m a  sample e characterized by an energy E'~. 
If the statistical approach is correct, E~, should be a good approximation of E'. 
If one wishes more accurate information, a large number (200) of c~ samples must 
be selected, giving a figure like Fig. 5. The figure shows that all the energies give 
a result between -0 .43  and - 0 . 3 2  a.u., while the Eo starting point correspond- 
ing to the 85 determinants is - 0 . 1 4  a.u., for a calculation involving only 10% of 
the N -  No determinants of Eq. (22). 

If one wishes more accurate results, it is possible to take account of all the 
samples of Fig. 5. The figure clearly indicates that the exact value lies around 
- 0 . 3 6 a . u .  But in this case, the computational effort is much larger (in the 
example of Fig. 5, 1500 x 200 = 300000 values of E'~ were calculated, which 
corresponds to 20 times the cost of the complete exact calculation). One must 
notice that this kind of methods should be applied only on very large systems. 
The poor efficiency of a SD-CI calculation on N2 does not mean that the method 
is hopeless. The following test on the benzene molecule is more reasonable. 

For  the benzene molecule, the total dimension is 493574, and the dimension 
of  S is 19. The energy E 0 is -0 .0459 a.u., the approximated SD-CI energy E '  is 
-0 .6219 a.u., and the full SD-CI energy should lie around -0 .6413 a.u. (see ref. 
[20]). The test presented on Fig. 6 is the same as for N2, with n = 9000. All the 
E ;  energies lie between 0.58 a.u. and 0.70 a.u., one calculation of E~, involves 
1.8% of the N -  N o determinants givingthe energy E'. Figure 6, like for N2, is 
given by a calculation of  200 values of E'~ and put very clearly into evidence a 
maximum at the correct value - 0 . 6 2  a.u. 

I 

--0.480 - 0 . 4 4 0  

r 

- 0 . 400  - 0 .350  -0.320 -O+2flO 

Fig. 5. Ab-initio SD-CI calculation on 
the N 2 molecule: (n = 1500, Ns = 200). 
E '  given by Eq. (16) has the value 
-0 .3618  a.u., see comments  on Fig. 1 
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Fig. 6. Ab-initio SD-CI calculation 
on the benzene molecule: 
(n = 9000, Ns = 200). E' given by 
Eq. (16) has the value - 0 . 6 2 1 9  a.u., 
see comments on Fig. 1 

The number o f / ~  values to get Fig. 6 is 180000, corresponding to 36% of 
the total calculation of E'. Compared with the N 2 molecule (2000%), this clearly 
demonstrates the interest of such methods in very large calculations. 

It would be desirable to start the calculation with small samples and to 
improve the accuracy until the distribution of Fig. 5 or 6 has a satisfactory 
shape. In Fig. 7, for the N 2 molecule, instead of 1500 values for each of the 200 
samples, only 100 were chosen, giving a first iteration. For each iteration 100 
values are added to each sample, the number of samples (200) remaining 
constant. At each iteration, the shape of the distribution becomes more reliable, 
till the root mean square reaches a given threshold value. 

Figures 8 and 9 present several curves similar to Fig. 7 for N 2 and the 
benzene. 
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Fig. 7. Ab-initio SD-CI calculation on 
the on the N 2 molecule: (Ns = 200) 
Convergence of the mean value of the 
energy with the improvement of the 
samples. 100 values are added to each 
sample at each iteration. At iteration N, 
the size of  each one of the Ns samples 
is then 100 × N (see text in Sect. 4) 
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Fig. 8. Ab-initio SD-CI calculation on 
the N 2 molecule: various possible curves 
similar to the curve of Fig. 7 

The curves for N2 and benzene are made in the same conditions (200 samples 
of 100 values for each iteration, and the same convergence threshold of 0.02). 
One may notice that, while for N 2 the process converges after a number of 
iterations around 18, for benzene, this number is near 100. The ratio 100/ 
18 = 5.6 should be compared to the square root of the ratio between the 
dimension of the matrices of  benzene and N2 (,/493574/16610 = 5.5). To keep a 
constant accuracy, the number of samples must grow like the square root of the 
dimension of the problem, which confirms that this kind of  approach is particu- 
larly interesting in very large problems. A SD-CI problem is not the most 
favorable test for this method, and we would like to apply it to larger CI 
problems. 

Looking at Figs. 8 and 9, some remarks can be made: (i) The convergence is 
very rapid at the beginning, but after a certain number of iterations, no 
improvement can be observed. An amelioration of the results seems therefore 
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Fig. 9. Various curves for the benzene 
molecule. See Figs. 7 and 8 
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Fig. 10. Histogram of 200 
(Ns = 200, n = 1500) values of 
N 2 equilibrium distance, do is 
the equilibrium distance obtained 
with a non-statistical calculation 

impossible by lowering the convergence threshold, but more probably by includ- 
ing some physical information in the model. It would be preferable to introduce 
some hierarchy among the determinants, while they are democratically treated in 
the tests presented here. (ii) The threshold itself is not very satisfactory and is not 
a correct criterion of the accuracy of the result. In Figs. 8 and 9, some curves 
remain constant near the exact value, and the threshold does not stop the 
process, while in other cases it stops just after the curves leave the correct value. 
Some other curves remain far from exact energy, and the duration of the process 
is not larger in these cases. 

All the tests performed in the preceding paragraphs were concerning the 
energy. In quantum chemistry calculations, many other quantities are much 
more interesting and easier to obtain than the total energy. For  example, a 
molecular geometry can be optimized at SCF, MP2 and many other approxi- 
mated methods, with reduced basis sets. All these methods will give completely 
different total energies, but the optimized geometries will be much more similar. 

In performing a geometry optimization using the preceding statistical ap- 
proach, one can hope to be in a similar situation: different samples will give quite 
different energies, but for each sample (i.e. for the same set of determinants), one 
can expect that the energy difference between two geometries will be rather 
constant. Figure 10 presents a statistical study of the equilibrium distance of N 2, 
in the same situation as Fig. 5: a sample of n (n = 1500) determinant is selected, 
and three values of the energy are calculated for three different internuclear 
distances with the same sample, giving a statistical equilibrium distance d. Ns 
(Ns = 200) values of d are calculated, which gives the histogram of Fig. 10. The 
result is quite encouraging, since the dispersion of the different equilibrium 
distances is very small. 

5 Discussion 

In this work, some characteristics of the various treatments have been kept 
constant in both model Hamiltonian and ab-initio tests. 
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(i) The energy has been written as sum of elementary contributions, each 
contribution corresponding to a determinant of the CI space. Only a small 
proportion of these elementary contributions are actually calculated, which leads 
to the statistical estimation of the total calculation. 

(ii) Consequently, the statistically chosen vector may be written PsO', P~ being 
a projector and the statistical energy can be written as follows: 

E' - (0 ' [HIPs0 ' )  (24) 

<V/le/,'> 
The energy written in Eq. (24) is completely different from an expectation value. 
E' can therefore be lower than E', which was illustrated in the various his- 
tograms. One may notice as a curious property that the overlap between the 
renormalized and Psi '  vectors: 

<0'lPx '> (25) 
(<~,1~,,>. <p,~,[p//>),/2 

vanishes if the density of the statistically chosen determinants is small enough, 
i.e. for a real statistical treatment. 

(iii) No iterative process can be developed. In Eq. (25) the number of vector 
coefficients to be computed for ~'  is much larger than for PO'. A further 
iteration would increase the number of required coefficients of ~ '  in the same 
proportion, like in a diagonalization process, for which the first trial vector is for 
example the single determinantal reference, the second iteration vector has the 
dimension of the singly and doubly excited determinants, and the third iteration 
takes account of all the determinants of a SDTQ-CI calculation. If one wants to 
avoid this explosion of the dimension, it is necessary to perform all the 
calculations within the statistically selected subspace. Instead of Eq. (24), inter- 
mediate calculations will use formulas like: 

(P~O'IH]P~O') (26) 

Among the H o. matrix elements of H, only the elements for which determinants 
i and j belong to the statistical subspace are taken into account. The density of 
the H diagonal elements kept will be equal to the density d~ of determinants kept 
in the statistical choice, while the density for Hq i e j  will be proportional to d~, 
which means that almost all the non-diagonal elements of H are lost! 

(iv) Concurrently to the calculation of/~, a statistical norm X is evaluated. This 
approach avoids a too large dispersion of the results due to some very atypical 
samples. 

(v) In this paper, the sampling is made among the determinants of the CI basis. 
One could imagine other possibilities, like a sampling among the matrix elements 
for example. The process would be completely different, but other possibilities 
might arise (see ref. [11]). 

6 Conclusion 

A statistical approach of very large CI calculations is presented and tested in two 
different cases: a semi-empirical valence bond model Hamiltonian, and approxi- 
mate SD-CI calculations. It appears that not all the statistical approaches give 
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reliable results. The aim of this paper is not to establish what kind of  conditions 
must be satisfied, but much more to exemplify in some tests giving good results 
that this unusual approach can be promising in some cases. 

For both model Hamiltonian and ab-initio calculations, it was possible to 
obtain reliable results. It however appears that computational time can be saved 
only in very large large calculations, which is quite satisfactory. T o  keep a 
constant level of  accuracy, the size of the sample must grow like x/N,  where N 
is the dimension of the CI problem. 
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